Nonequivalence of Classical MHC Class I Loci in Ability to Direct Effective Antiviral Immunity

نویسندگان

  • Kevin D. Pavelko
  • Yanice Mendez-Fernandez
  • Michael P. Bell
  • Michael J. Hansen
  • Aaron J. Johnson
  • Chella S. David
  • Moses Rodriguez
  • Larry R. Pease
چکیده

Structural diversity in the peptide binding sites of the redundant classical MHC antigen presenting molecules is strongly selected in humans and mice. Although the encoded antigen presenting molecules overlap in antigen presenting function, differences in polymorphism at the MHC I A, B and C loci in humans and higher primates indicate these loci are not functionally equivalent. The structural basis of these differences is not known. We hypothesize that classical class I loci differ in their ability to direct effective immunity against intracellular pathogens. Using a picornavirus infection model and chimeric H-2 transgenes, we examined locus specific functional determinants distinguishing the ability of class I sister genes to direct effective anti viral immunity. Whereas, parental FVB and transgenic FVB mice expressing the H-2K(b) gene are highly susceptible to persisting Theiler's virus infection within the CNS and subsequent demyelination, mice expressing the D(b) transgene clear the virus and are protected from demyelination. Remarkably, animals expressing a chimeric transgene, comprised primarily of K(b) but encoding the peptide binding domain of D(b), develop a robust anti viral CTL response yet fail to clear virus and develop significant demyelination. Differences in expression of the chimeric K(b)α1α2D(b) gene (low) and D(b) (high) in the CNS of infected mice mirror expression levels of their endogenous H-2(q) counterparts in FVB mice. These findings demonstrate that locus specific elements other than those specifying peptide binding and T cell receptor interaction can determine ability to clear virus infection. This finding provides a basis for understanding locus-specific differences in MHC polymorphism, characterized best in human populations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human Papillomavirus and Cancer - Immunological Consequences of MHC Class I Down-Regulation

Few studies have been conducted on the causative factors associated with the development of cancer. Infection by high risk human papillomaviruses (HPVs) have been implicated as causative agents in a variety of cancers. HPV is capable of evading immune system and establishing persistent infections. Prolonged infection and lesion maintenance are associated with higher risk of neoplastic progressi...

متن کامل

The MHC of the duck (Anas platyrhynchos) contains five differentially expressed class I genes.

MHC class I proteins mediate a variety of functions in antiviral defense. In humans and mice, three MHC class I loci each contribute one or two alleles and each can present a wide variety of peptide Ags. In contrast, many lower vertebrates appear to use a single MHC class I locus. Previously we showed that a single locus was predominantly expressed in the mallard duck (Anas platyrhynchos) and t...

متن کامل

HLA-KIR Interactions and Immunity to Viral Infections

Host genetic factors play a central role in determining the clinical phenotype of human diseases. Association between two polymorphic loci in human genome, human leukocyte antigen (HLA) and killer cell immunoglobulin-like receptors (KIRs), and genetically complex infectious disease, particularly those of viral etiology, have been historically elusive. Hence, defining the influence of genetic di...

متن کامل

Structure of a Classical MHC Class I Molecule That Binds “Non-Classical” Ligands

Chicken YF1 genes share a close sequence relationship with classical MHC class I loci but map outside of the core MHC region. To obtain insights into their function, we determined the structure of the YF1*7.1/β(2)-microgloblin complex by X-ray crystallography at 1.3 Å resolution. It exhibits the architecture typical of classical MHC class I molecules but possesses a hydrophobic binding groove t...

متن کامل

Human Neonatal Dendritic Cells Are Competent in MHC Class I Antigen Processing and Presentation

Neonates are clearly more susceptible to severe disease following infection with a variety of pathogens than are adults. However, the causes for this are unclear and are often attributed to immunological immaturity. While several aspects of immunity differ between adults and neonates, the capacity of dendritic cells in neonates to process and present antigen to CD8+ T cells remains to be addres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2012